Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin(1A) receptor: implications in SLOS.
نویسندگان
چکیده
The requirement of membrane cholesterol in maintaining ligand binding activity of the hippocampal serotonin(1A) receptor has previously been demonstrated. In order to test the stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with 7-dehydrocholesterol. The latter sterol is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in the sterol ring. Our results show, for the first time, that replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin(1A) receptor, in spite of recovery of the overall membrane order. The requirement for restoration of ligand binding activity therefore is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.
منابع مشابه
Signaling by the human serotonin(1A) receptor is impaired in cellular model of Smith-Lemli-Opitz Syndrome.
The Smith-Lemli-Opitz Syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. SLOS is clinically diagnosed by reduced plasma levels of cholesterol along with elevated levels of 7-dehydrocholesterol (and its positional isomer 8-dehydrocholesterol) and the ratio of their concentrations to that of cholesterol. Since SLOS is associ...
متن کاملDifferential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS.
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. Solubilization of the hippocampal serotonin1A receptor by 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) is accompanied by loss of membrane cholesterol which results in a...
متن کاملDifferential effects of cholesterol and desmosterol on the ligand binding function of the hippocampal serotonin(1A) receptor: implications in desmosterolosis.
Cholesterol is a unique molecule in terms of high level of in-built stringency, fine tuned by natural evolution for its ability to optimize physical properties of higher eukaryotic cell membranes in relation to biological functions. We previously demonstrated the requirement of membrane cholesterol in maintaining the ligand binding activity of the hippocampal serotonin(1A) receptor. In order to...
متن کاملCholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus.
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven-transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding activity and G-protein coupling of the bovine hippocampal 5-HT(1A) receptor by depleting cholesterol from native membranes using methyl-beta-cyclodextrin (MbetaCD). Removal of choleste...
متن کاملDesmosterol replaces cholesterol for ligand binding function of the serotonin(1A) receptor in solubilized hippocampal membranes: support for nonannular binding sites for cholesterol?
The serotonin(1A) receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive and behavioral functions. Solubilization of the hippocampal serotonin(1A) receptor by CHAPS is accompanied by loss of cholesterol that results in a reduction in specific agonist binding activity. Replenishment of cholesterol to so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 358 2 شماره
صفحات -
تاریخ انتشار 2007